
Abstract A computer-aided classification system was

developed for the assessment of the severity of hip

osteoarthritis (OA) . Sixty-four radiographic images of

normal and osteoarthritic hips were digitized and en-

hanced. Employing the Kellgren and Lawrence scale,

the hips were grouped by three experienced ortho-

paedists into three OA-severity categories: Normal,

Mild/Moderate and Severe. Utilizing custom-devel-

oped software, 64 ROIs corresponding to the radio-

graphic Hip Joint Spaces were manually segmented

and novel textural features were generated. These

features were used in the design of a two-level classi-

fication scheme for characterizing hips as normal or

osteoarthritic (1st level) and as of Mild/Moderate or

Severe OA (2nd level). At each classification level, an

ensemble of three classifiers was implemented. The

proposed classification scheme discriminated correctly

all normal hips from osteoarthritic hips (100% accu-

racy), while the discrimination accuracy between Mild/

Moderate and Severe osteoarthritic hips was 95.7%.

The proposed system could be used as a diagnosis

decision-supporting tool.
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Abbreviations

OA Osteoarthritis

HJS Hip joint space

KL Kellgren and Lawrence

ROI Region of interest

CLAHE Contrast limited adaptive histogram

equalization

GEN_Image Gabor energy image

GLRLM Grey level run length matrix

GEMRL Gabor energy measure run length

PNN Probabilistic neural network

k-NN k-Nearest–neighbour

MV Majority vote

CV Coefficient of variation

1 Introduction

Osteoarthritis (OA) is considered to be the most

common cause of human disability in industrialized

countries [1]. The condition is characterized by pro-

gressive disintegration and loss of the articular carti-

lage, accompanied by alterations in the subchondral

joint tissues [22].

Although Magnetic Resonance Imaging is regarded

as the most sensitive tool for assessing articular carti-

lage [26], plain film radiography is considered as an

adequate resource for the initial clinical evaluation of

the disease [23]. The dominant radiographic features of
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hip OA, reflecting the degeneration of the articular

cartilage and alteration in the subchondral bone tissue,

comprise Hip Joint Space (HJS) narrowing, subchon-

dral cysts development, osteophyte formation and

subchondral sclerosis [3].

The radiographic assessment of OA concerns the

confirmation of the existence of the disease, the

assessment of the severity as well as the monitoring of

the progression of joint structural alterations. For the

assessment of the severity of hip OA, several radio-

graphic scoring systems have been proposed. These

scoring systems are mainly based on the subjective

assignment of a severity grade to the studied hip joint,

while the definitions of severity grades are based on

aspects of joint structural alterations visualized on

plain radiographs [31]. Among the proposed radio-

graphic scoring systems, the Kellgren and Lawrence

(KL) grading scale [19] is considered as the gold

standard for epidemiological studies [30]. The KL scale

defines five categories of OA severity ranging between

0 and 4, with grades ‡ 2 corresponding to osteoarthritic

pathology. Hips with KL = 0 or 1 are characterized as

normal or doubtful for OA, respectively, while the

grades 2, 3 and 4 are assigned to hips of mild, moderate

and severe OA, respectively [19].

Monitoring of hip OA progression refers to the

measurement of joint structural–anatomic changes

with time, which are associated with the degenerative

action of the disease. Specifically, progression mostly

refers to the quantitative assessment of articular car-

tilage loss and HJS narrowing is considered the most

reliable index for evaluating the progression [3].

Quantification of HJS narrowing concerns manual or

computerized measurements of radiographic HJS

parameters, such as HJS width and/or HJS area on

serial radiographs [11, 15].

Texture as a regional descriptor of a digital image is

related to the distribution and spatial interrelationships

of pixel intensities corresponding to the region. Com-

puter-based texture analysis of digital images concerns

the utilization of algorithms capable of quantifying the

textural properties of an image [10]. In the field of

medical imaging, texture analysis can be used for the

extraction of diagnostically meaningful information by

means of textural features, which may not be easily

perceivable [33]. In addition, the extracted information

can be used for distinguishing between tissue struc-

tures, which are represented by textures in medical

images [4, 34].

Within the framework of the radiographic investi-

gation of hip OA, a computer-based method has re-

cently been proposed by our group for the quantitative

assessment of the severity of hip OA and the moni-

toring of the progression of the disease . The method

refers to the utilization of first and higher order sta-

tistical textural features, extracted from the region of

the radiographic HJS, and the introduction of textural-

features thresholds for grading and quantifying severity

of hip OA [7].

In this study, a more robust pattern recognition

approach, based on classification algorithms and tex-

tural features calculated from Gabor filters, is pro-

posed for the assessment of the severity of hip OA . To

the best of our knowledge, a texture-based pattern

recognition approach has not been reported for the

specific purpose. The proposed method concerns: (a)

the calculation of novel textural features extracted

from the region of radiographic HJS, (b) the imple-

mentation of classification algorithms (classifiers) for

characterizing hips as Normal or Mild/Moderate or

Severe OA, and (c) the combination of different clas-

sifiers (ensembles) in order to improve the diagnostic

accuracy of the method.

2 Materials and methods

2.1 Patients and radiographs

The sample of the study comprised 64 radiographic

hip joint images (18 normal and 46 osteoarthritic),

corresponding to 32 patients with verified unilateral

or bilateral hip OA. Patients’ ages ranged between 49

and 83 years, with a mean age of 66.7 years. Eighteen

patients were diagnosed as unilateral OA while 14 as

bilateral OA. The American College of Rheumatol-

ogy criteria were used for OA diagnosis. In particular,

and within the context of combined clinical and

radiographic criteria for OA diagnosis, the charac-

terization of a hip as osteoarthritic was based on the

restricted mobility of the joint as well as on the

presence of pain (associated to hip joint use) with

the combined radiographic evidence of osteophytes

and/or joint space narrowing [2]. This combined

evaluation of OA was necessary, since disparity may

exist between a radiographic score and a clinical

finding of OA.

All radiographs were taken employing the same

radiographic protocol, which comprised use of the

same X-ray unit (Siemens, Polydoros 50, Erlangen,

Germany), alignment of the X-ray beam 2 cm above

the pubic symphysis, a film-focus distance of 100 cm,

tube voltage between 70 and 80 kVp and use of a fast

screen and film cassette (30 · 40 cm2). Pelvic radio-

graphs were digitized employing a laser digitizer, suit-

able for medical applications [21] (Lumisys, Sunnyvale,
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CA, USA). Digitizer performance was evaluated

employing a quality control protocol [13]. It is obvious

that in the case of digital radiography systems this

intermediate scanning step is avoided.

The severity of OA was assessed radiographically by

three experienced orthopaedists, employing the KL

grading scale [19]. Each of the orthopaedists graded

OA by assigning a KL grade to the examined hips,

while radiographs were assessed at two different time

points with about a month’s interval between the

evaluations. In order to establish a golden-standard,

and thus to design our system, only those exams of

common consent were retained for the purposes of the

present study. In this context, from the 74 radiographic

images of the original sample, 64 were retained for

the remaining part of the study. Based on the KL scale,

the hips of the sample were grouped into three major

OA-severity categories: Normal/Doubtful (KL = 0, 1),

Mild/Moderate (KL = 2, 3) and Severe (KL = 4).

Accordingly, 18 hips were assigned to Normal/Doubt-

ful category, 16 to Mild/Moderate and 30 to Severe.

2.2 Radiograph enhancement and determination

of radiographic hip joint spaces

On each pelvic radiograph, two Regions Of Interest

(ROIs) corresponding to a patient’s both HJSs were

determined, employing custom-developed software

[27, 28]. Specifically, an algorithm realizing the Con-

trast-Limited Adaptive Histogram Equalization

(CLAHE) method [24] was employed in MATLAB

(The MathWorks Inc., Natick, MA, USA) to enhance

the contrast of the digitized radiographs, and thus to

emphasize the articular margins of the hip joint. As it

can be seen in Fig. 1, an acute angle encompassing the

weight-bearing portion of the hip joint provided the

medial and lateral limits of the HJS-ROI [11]. These

limits as well as the articular margins of the joint (edge

of the femoral head, inferior margin of the acetabulum)

were individually determined by each orthopaedists.

This ROI (Fig. 2) was used for the extraction of textural

features. Only ROIs segmented by the orthopaedist

with the highest reproducibility were used.

Following the above-mentioned procedure for each

patient of the sample, 64 HJS-ROIs were obtained in

total. From these, 18 HJS-ROIs corresponded to the

contralateral normal hips of 18 unilateral OA patients.

These normal HJS-ROIs were used as the control

sample of the study (Normal/Doubtful category). The

remaining 46 ROIs corresponded to the 18 and the 28

pathological hips of the unilateral and bilateral OA

patients, respectively. These ROIs were distributed to

the Mild/Moderate and the Severe categories.

2.3 Textural features generation

Employing custom-developed algorithms in MAT-

LAB, textural features were generated from the

segmented HJS-ROIs employing the multi-channel

two-dimensional (2-D) Gabor filtering approach [12].

Additionally, novel textural features, aiming to capture

organized structures within the region of radiographic

HJS, were introduced in the present study. These

features, labelled as ‘‘Gabor Energy Measure Run

Length’’, were generated by the combination of the

Grey Level Run Length Matrix (GLRLM) method

[14] and the 2-D Gabor filtering approach [12].

2.3.1 The multi-channel two-dimensional Gabor

filtering approach

According to the multi-channel Gabor filtering ap-

proach, textural features (Gabor features) can be ob-

tained by filtering an input image with a set of 2-D

Gabor filters. A 2-D Gabor filter can be considered as

a sinusoidal plane wave of certain spatial frequency

and orientation that is modulated by a 2-D Gaussian

envelope. Gabor filters provide the advantage that can

be simultaneously be optimally localized in both the

spatial and spatial frequency domains [12].

Fig. 1 Determination of the hip joint space ROI. xOz acute
angle defined by patient’s standard anatomical landmarks
encompassing the examined ROIs. x highest point of the
homolateral sacral wing, z lateral rim of the acetabulum, O
centre of the femoral head
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For the needs of the present study, 5 · 5 Gabor fil-

ters were used while four (4) filtered images, corre-

sponding to filter orientations of 0, 45, 90 and 135�,

were generated for each HJS-ROI image (see Fig. 3).

In these images, characterized as ‘‘Gabor Energy

Images (GEN_Images),’’ the pixel intensities represent

the values of a measurement, labelled as Gabor Energy

[16]. From each one of the GEN_Images, six first-order

statistics (mean h, variance h, skewness h, kurtosis h,

range h and standard deviation h, where, h: 0, 45, 90

and 135� denotes the orientation of the Gabor filter)

were computed providing 24 Gabor first order statistics

textural features. Details concerning the computation

of the Gabor features are given in the Appendix.

2.3.2 Gabor energy measure run length features

The GLRLM method [14] and the 2-D Gabor filtering

approach [12] were suitably combined to provide novel

textural features in an effort to improve the Gabor

features discriminatory capacity.

The suggested approach comprised the following

steps: (a) The HJS-ROI image was convolved with the

2-D Gabor filter. (b) The GEN_Image of the HJS-ROI

was formed by replacing every pixel in the filtered

image with a Gabor Energy measure associated to the

pixel [16]. (c) As described by Galloway [14], the

GLRLM along the angular direction d of the GEN_

Image was computed (d = 0, 45, 90 and 135�, while d is

defined in a similar way as h for the case of Gabor

filters) and five textural features, labelled as ‘‘Gabor

Energy Measure Run Length (GEMRL_h)’’ features,

were extracted (h: 0, 45, 90 and 135� denotes the ori-

entation of the Gabor filter that is implemented on

the HJS-ROI image). Considering that five GEMRL

features were computed from each one of the four

GEN_Images, 20 novel textural features were pro-

duced for each HJS-ROI. Details concerning the

computation of GEMRL features can be found in the

Appendix.

2.4 Feature normalization and reduction

All textural features employed in the present study (24

Gabor first order statistics and 20 GEMRL) were

normalized to zero mean and unit standard deviation

according to Eq. 1:

ftk norm ¼
ftk � l

r
; ð1Þ

where ftk_norm is the normalized value of the ftk tex-

tural feature, while l and r are the mean value and

standard deviation, respectively, of feature ftk over all

HJS-ROIs. Each time that an isolated case is fed

into the system, the same normalization procedure is

followed by calculating the l and r values over all

HJS-ROIs but the isolated one. The latter is then

normalized employing the l and r values calculated by

the rest of the patterns.

Fig. 2 Example of segmented hip joint space ROI corresponding
to Fig. 1

Fig. 3 Gabor Energy Images
(GEN_Images) of the
segmented hip joint space
ROI, generated as the result
of filtering Fig. 2 with Gabor
filters of: (a) 0� orientation
(GEN_Image_0�),
(b) 45� orientation
(GEN_Image_45�),
(c) 90� orientation
(GEN_Image_90�) and
(d) 135� orientation
(GEN_Image_135�)
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The discriminatory ability of each one of the tex-

tural features was tested employing the Student’s t-test.

Only the best discriminating features (p < 0.001) were

selected and were employed in the design of the clas-

sification scheme [32]. For each classification task, the

optimum combination of the best discriminating fea-

tures (i.e., the combination providing the highest clas-

sification accuracy employing the minimum number of

features) was determined according to the exhaustive

search procedure [32]. More specifically, every possible

feature combination (i.e., combinations of 2–5 fea-

tures) was used for the design of the classifier, while

the performance of the classifier was tested each time.

Finally, the feature combination that demonstrated

the highest classification accuracy with the smallest

number of features was selected as the optimum one.

2.5 Classification of hips into osteoarthritis-severity

categories

A hierarchical decision tree was developed for the

assignment of hips into three OA-severity catego-

ries labelled as Normal, Mild/Moderate and Severe.

Figure 4 shows the structure of the classification

approach employed in the present study. The classi-

fication system comprised two levels. In the first level,

the discrimination between normal and osteoarthritic

hips was performed. In the second level, the hips that

had been characterized as osteoarthritic in the first

level were further classified as of Mild/Moderate or

Severe OA. Each level was implemented by means

of a combined classification scheme employing the

following individual classifiers: Probabilistic Neural

Network (PNN) classifier [29], k-Nearest–Neighbour

(k-NN) classifier and Bayes classifier [32]. Accord-

ingly, at each level of the decision tree, the textural

features that were extracted from the region of

radiographic HJS were used as inputs to each one

of the individual classifiers, while the classifiers’

outputs corresponding to the best classification

performances were combined employing the Major-

ity Vote (MV) rule [5, 18]. According to the latter,

an unknown pattern is assigned to a specific class

xk if the majority of individual classifiers, form-

ing the combined classifier, assigns the pattern

to xk.

Fig. 4 The hierarchical
decision tree structure for the
discrimination between
normal (N) and osteoarthritic
(P) hips at Level 1, and
between hips of Mild/
Moderate (M) and Severe (S)
osteoarthritis at Level 2. In
both levels, the PNN, k-NN
and Bayes classifiers were
combined employing the MV
rule
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2.5.1 Probabilistic neural network classifier

The PNN classifier, as proposed by Specht [29],

encompasses both the Bayes’ classification approach

and the Parzen’s estimators of probability density

functions. PNN’s main advantages are that: (a) it is fast

to train and (b) the probability density functions of the

pattern vectors forming a class do not have to follow a

Gaussian distribution [29]. The decision function of the

PNN classifier employed in this study is described by

Eq. 2:

dkðxÞ ¼
1

ð2 � pÞn=2 � rn �Nk

XNk

i¼1

e�
x�xik k2

2�r2 ; ð2Þ

where xi is the ith training input pattern, x is the un-

known pattern to be classified, Nk is the number of

patterns forming the class xk, n is the number of tex-

tural features forming the input pattern while sigma (r)

is an adjusting parameter, taking values ranging be-

tween 0 and 1. According to Eq. 2, as the distance

between x and xi (||x-xi||) increases, the exponential

term approaches 0, indicating a small similarity be-

tween the two pattern vectors. On the other hand, as

the distance between x and xi (||x-xi||) decreases, the

exponential term approaches 1, indicating a significant

similarity between the two pattern vectors. As sigma

approaches 0, even small differences between xi and x

will provide a zero value for the exponential term,

while larger values of sigma provide more smooth re-

sults. As it can be concluded, the selection of sigma

affects the estimation error of the PNN and is deter-

mined experimentally by comparing the accuracies

obtained for different values of the parameter. The

unknown pattern x was classified to the class with the

highest value of decision function dk (x) [29, 32].

2.5.2 Bayes classifier

Bayes classification is based on decision functions as

described by Eq. 3:

dkðxÞ ¼ pðxjxkÞ � PðxkÞ; k ¼ 1; 2; :::;N; ð3Þ

where p(x|xk) is the probability density function of the

pattern vectors of class xk, while P(xk) represents the

probability concerning the occurrence of class xk.

Considering an unknown pattern, the latter is assigned

to the class whose decision function provides the

highest value. Assuming equal probabilities P(xk) and

Gaussian probability density functions p(x|xk), the

decision function of the classifier may be represented

by Eq. 4:

dkðxÞ ¼ ln PðxkÞ �
1

2
� ln

Ckj j �
1

2
ðx�mkÞT � C�1

k � ðx�mkÞ
h i

; k ¼ 1; 2; :::;N;

ð4Þ

where Ck and mk represent the covariance matrix and

the mean vector of class xk, while T indicates trans-

position [32].

2.5.3 k-Nearest–neighbour classifier

The k-Nearest–Neighbour (k-NN) classification algo-

rithm is one of the most successful routines for per-

forming general, non-parametric classification, since no

prior knowledge of patterns distributions is required.

According to the k-NN classification approach, an

unknown pattern is assigned to the class where the

majority of its k-Nearest–Neighbours belong. The term

‘‘nearest’’ is related to the lowest value of a predefined

distance function. For a two-classes classification task,

as the number of neighbours increases (k fi ¥) the

performance of the classifier tends to the optimal one.

For the needs of this study, the Euclidean distance

function was used [32]. Referring to the n-dimensional

feature space, the Euclidean distance between training

and the unknown pattern is defined according to Eq. 5:

dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � y1Þ2 þ ðx2 � y2Þ2 þ � � � þ ðxn � ynÞ2
h ir

;

ð5Þ

where, d(x,y) is the Euclidian distance, x = [x1 x2 ... xn]

represents the pattern vector to be classified, while

y = [y1 y2 ... yn] denotes the training pattern.

Each classifier was validated for both levels

employing the Leave-One-Out method, i.e., the clas-

sifier was designed by all but one sample of the data

set, which was then classified to one of two classes. In

this way, the classifier is evaluated by data that are not

involved in its design. The specific validation method

was used, since an independent data set that could be

used for the verification of our results was not acces-

sible. The performance of the combined classification

scheme was evaluated in terms of sensitivity, specificity

and overall accuracy [32].

2.6 Statistical analysis

Student’s t-test was used in order to investigate the

existence of statistically significant differences between

osteoarthritic and normal hips for textural feature
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values. In addition, the Student’s t-test was employed

for the evaluation of the discriminatory ability of each

one of the textural features. In particular, the textural

features that provided a p value lower than 0.001

(p < 0.001) were considered as the best discriminating

ones, and thus were selected and further employed in

the design of the classification scheme [32]. The specific

significance level was considered as a proper one, even

after the Bonferroni correction of the p value [9]. The

specific correction was considered as necessary, since

multiple significance tests were performed for the

various textural features. Normality of distributions

was verified employing the Lilliefors test [20]. Intra-

observer and inter-observer reproducibility of HJS-

ROI outlining were both evaluated by means of the

Coefficient of Variation (CV) [35]. Accordingly, HJS-

ROIs were delineated in all radiographs twice by each

one of the experienced orthopaedists with about a

month’s interval between evaluations. In order to

investigate whether textural features extracted from

the two measurements differed significantly, the Stu-

dent’s paired t-test was used. The HJS-ROIs that were

segmented with the highest degree of reproducibility

were used for subsequent texture analysis.

3 Results

The distributions of all the textural feature values were

found to be Gaussian according to the Lilliefors test

[20]. Statistically significant differences (p < 0.001)

were derived between normal and osteoarthritic hips

for the various textural feature sets employed in the

study. The determination of the HJS-ROIs was found

to be reproducible, since the CV values regarding the

intra-observer and the inter-observer reproducibility

were, on an average, 3.4 and 4.2%, respectively. In

addition, the textural feature values, which were ex-

tracted from the HJS-ROIs that were determined with

the highest degree of reproducibility, were found not to

differ significantly (p > 0.05).

Table 1 summarizes the best classification scores

achieved by the individual classifiers regarding the

discrimination between normal and osteoarthritic hips.

The classification accuracies displayed correspond to

the two textural feature sets used. Regarding the uti-

lization of the Gabor first order statistics features, the

PNN classifier accomplished a classification accuracy of

96.9% utilizing the feature combination comprising the

features (mean_45�, standard deviation_0�, standard

deviation_135�, kurtosis_135� and range_90�). For the

specific case, the sigma (r) value was determined, after

multiple trials, to be equal to 0.3. The same classifica-

tion score was achieved by the k-NN classifier for

the feature combination (standard deviation_90�,

skewness_ 135�, kurtosis_135�, range_90�) and 5

Nearest–Neighbours (k = 5). Finally, the classification

performance of the Bayes classifier for the best feature

vector combination (standard deviation_135�, vari-

ance_0�, kurtosis_135�) was 95.3%. Regarding the

characterization of hips as normal or osteoarthritic

employing the proposed GEMRL features, the PNN

classifier characterized correctly 63 of the 64 hips

(98.4% overall accuracy) utilizing the feature combi-

nation (GEMRL3_45�, GEMRL4_45�, GEMRL2_90�
and GEMRL3_135�) for a sigma value of 0.3 (r = 0.3).

The same classification performance was accomplished

by the k-NN classifier for the feature combination

(GEMRL3_0�, GEMRL1_90�, GEMRL3_90�, GEM-

RL1_135� and GEMRL5_135�) and k = 5. Regarding

the Bayes classifier, the corresponding classification

accuracy was 96.9% utilizing the feature combination

(GEMRL2_0�, GEMRL1_135�, GEMRL2_135� and

GEMRL3_135�). The combination of the PNN and the

k-NN classifiers, when both were designed with the

GEMRL features, achieved a lower classification score

(96.9%) in comparison to the MV scheme for the three

classifiers (100%).

Table 2 represents the truth table concerning the

discrimination between normal and osteoarthritic hips

employing the combined classification scheme and the

GEMRL features. The highest possible classification

accuracy (100%) was achieved, since all the normal

Table 1 Highest classification accuracies regarding the
discrimination between normal and osteoarthritic hips, utilizing
individual classifiers and various textural feature sets

Classifier Gabor first order
statistics (%)

GEMRL
features (%)a

PNN 96.9 98.4
k-NN 96.9 98.4
Bayes 95.3 96.9

a Gabor Energy Measure Run Length

Table 2 Combined classification scheme discrimination
accuracy between normal and osteoarthritic hips employing the
Gabor Energy Measure Run Length (GEMRL) features

Osteoarthritis
severity categories

Normal Osteoarthritic Accuracy (%)

Normal 64 0 100
Osteoarthritic 0 64 100
Overall accuracy 100
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(100% specificity) and osteoarthritic hips (100% sen-

sitivity) were characterized correctly.

Similarly, Table 3 corresponds to the truth table for

the 2nd level of the hierarchical tree structure.

Employing the best features (GEMRL features), the

ensemble of three classifiers assigned 44 of the 46

osteoarthritic hips to the correct category, achieving a

classification accuracy of 95.7%. Only one hip of Mild/

Moderate OA was misclassified, providing a specificity

accuracy of 93.8%, while 29 of the 30 hips were char-

acterized as of Severe OA, resulting in a sensitivity

accuracy of 96.7%.

Table 4 tabulates the classification performance of

the individual classifiers in discriminating between hips

of Mild/Moderate and of Severe OA, employing the

GEMRL features. The PNN classifier characterized

correctly 42 of the 46 hips (91.3% overall accuracy)

utilizing the feature combination (GEMRL1_0�,

GEMRL4_0�, GEMRL3_45�, GEMRL1_90� and

GEMRL5_135�) for r = 0.2. The k-NN classifier pro-

vided an overall accuracy of 89.1%, assigning to the

correct categories 41 of the 46 hips for the feature

combination (GEMRL4_0�, GEMRL5_0�, GEM-

RL2_45�, GEMRL4_90� and GEMRL3_135�) and

three Nearest–Neighbours (k = 3). Regarding the

Bayes classifier, the accomplished classification score

was also 89.1% for the feature combination (GEM-

RL2_90�, GEMRL4_90�, GEMRL1_135� and GEM-

RL4_135�).

4 Discussion

In this study, a computer-aided classification system,

based on pattern recognition methods, is proposed for

characterizing hips as Normal, Mild/Moderate or Se-

vere OA from radiographic images. In digitized

radiographs, texture corresponds to the spatial orga-

nization of pixel intensities variation, which is attrib-

uted to X-ray attenuation properties of anatomical

structures [6]. In this study, the analysed HJS-ROI

comprises either osteoarthritic and/or normal super-

imposed anatomical components, since it is formed by

the superposition of three-dimensional anatomical

structures of the articular cartilage, the posterior ace-

tabular wall and the iliac bone. Thus, textural features

extracted from the region of radiographic HJS could

provide valuable textural information regarding the

condition of anatomical structures in the hip joint.

In OA, the articular cartilage and the subchondral

bone tissues undergo biochemical, biomechanical and

structural alterations [1, 22]. Degradation of the artic-

ular cartilage in terms of fibrillation, progressive soft-

ening and disintegration results in increased loading on

the subchondral bone, which causes a remodelling of

the bone. On the other hand, alterations in the struc-

ture as well as in the mechanical properties of sub-

chondral bone have been associated with cartilage

degeneration in OA [8, 25]. These alterations are ex-

pected to affect the attenuation properties of hip joint

tissues and, as a consequence, the radiographic HJS

texture. Statistical analysis revealed the existence of

statistically significant differences between normal and

osteoarthritic hips for the textural feature sets used in

this study, signifying the alteration of HJS texture due

to OA. Within this context, the Gabor first order sta-

tistics and the proposed GEMRL textural features

were employed in the design of the classification

schemes.

Regarding the discrimination between normal and

osteoarthritic hips (see Table 1), the utilization of

GEMRL features improved the classification perfor-

mance of each one of the individual classifiers in

comparison to the Gabor first order statistical features.

In an effort to further improve the discrimination

accuracy, combined classification schemes were

implemented at both levels of a hierarchical decision

tree. In particular, the outputs provided by the PNN, k-

NN and the Bayes classifiers (each classifier utilizing its

own optimum combination of GEMRL features) were

combined by the MV rule [5, 18]. As Table 2 demon-

strates, the proposed classification scheme achieved the

highest possible classification score by discriminating

correctly all normal hips from osteoarthritic hips. In a

Table 3 Combined classification scheme discrimination
accuracy between hips of Mild/Moderate and of Severe
osteoarthritis employing the best features (Gabor Energy
Measure Run Length features)

Osteoarthritis
severity categories

Mild/Moderate Severe Accuracy (%)

Mild/Moderate 15 1 93.8
Severe 1 29 96.7
Overall accuracy 95.7

Table 4 Classification performance of individual classifiers at
Level 2, regarding the discrimination between hips of Mild/
Moderate and of Severe osteoarthritis employing the Gabor
Energy Measure Run Length features

Classifier Overall
accuracy (%)

Specificity (%) Sensitivity (%)

PNN 91.3 93.8 90.0
k-NN 89.1 75.0 96.7
Bayes 89.1 81.3 93.3
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previous study [17], the discrimination between normal

and osteoarthritic hips has been performed by the

application of quantitative thresholds on manually

measured HJS-width values on colon radiographs,

with an error rate of 3.6% for joints with HJS-

width £ 2.5 mm. In a previous study by our group [7],

employing thresholds on the Grey Level Non-Unifor-

mity textural feature [14], the discrimination scores

between normal and OA hips and among various

grades of OA severity was 90.6 and 88.9%, respec-

tively. The present study proposes a texture-based

pattern recognition system for the characterization of

hip OA severity.

At the 2nd level of the hierarchical decision tree, the

hips that had been characterized as osteoarthritic were

further discriminated as of Mild/Moderate or of Severe

OA. The ensemble of classifiers improved the dis-

crimination accuracy between hips of Mild/ Moderate

and of Severe OA as compared to individual classifiers.

This can be attributed to the fact that the MV rule

utilizes the regions of feature space, where each clas-

sifier achieves its best classification performance [18].

As it can be observed from Tables 2 and 3, the uti-

lization of the GEMRL features at both levels of the

classification structure resulted in relatively high clas-

sifications scores regarding the discrimination among

various grades of hip OA severity. This finding may be

indicative of the capacity of the proposed features to

differentiate between normal and osteoarthritic hips as

well as between hips of Mild/Moderate OA and of

Severe OA. The discriminatory power of the GEMRL

features may be justified considering that their com-

putation is based on the combination of the GLRLM

method and the Gabor filtering approach. In particular,

the degenerative action of OA is expected to affect the

Gabor Energy measure values in the corresponding

filtered HJS-ROI images. Thus, textural features

involving Gabor Energy measures may be of value in

the evaluation of structural alterations of the hip joint

related to OA. In particular, the GEMRL features may

quantify inherent textural properties of the GEN_-

image that are related to the predominance of small

(short runs) or large (long runs) structures and to the

variability in grey level or length of the organized lin-

ear structures. Generalizing, the results of the present

study indicate that the radiographic texture of HJS

provides diagnostically useful information regarding

the assessment of OA severity. Thus, beyond the well-

known HJS width and/or HJS area, the parameters of

radiographic HJS that could be used for the evaluation

of osteoarthritic alterations in the hip joint can include

textural features generated from the specific region.

Within this context, the proposed computer-based

system can be considered as a supportive tool to the

diagnostic procedure followed in clinical routine, since:

(a) it is compatible with the KL grading scale, and (b) it

discriminates among OA-severity categories success-

fully, as it is indicated by the high classification scores

that were accomplished. In conditions of clinical rou-

tine, the system’s computer processing time is infini-

tesimal. However, the only time demanding operation

(<1 min) concerns mostly the manual delineation of

radiographic HJS by the orthopaedist.

5 Conclusions

A computer-aided classification system was developed

for assessing the severity of hip OA from radiographic

images. The system relies on the Kellgren and Law-

rence grading scale, which is considered as the gold

standard for epidemiological studies. The suggested

approach concerns the generation of textural features

from the region of radiographic HJS and their utiliza-

tion in the design of a hierarchical decision tree

structure. Specifically, textural features employing the

Gabor Energy measures in radiographic HJS images

may reflect the degenerative action of OA in the hip

joint tissues. Considering the relatively high classifica-

tion scores achieved in this study, the utilization of

textural features capable of quantifying the spatial

distribution and the linear organization of Gabor

Energy measures within the radiographic HJS may

be valuable in the discrimination between normal

and osteoarthritic hips as well as among grades of hip

OA severity. The proposed system could be used as a

diagnosis decision-supporting tool.
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6 Appendix

6.1 Generation of Gabor textural features

A two-dimensional (2-D) Gabor filter G(x,y) can be

considered as a sinusoidal plane wave of certain spatial

frequency and orientation, modulated by a 2-D

Gaussian envelope [12].

For the needs of this study, four (4) filter orienta-

tions were used: h� = 0�, 45�, 90�, and 135�. For each

orientation h, a pair of filters with an anti-symmetric

phase relationship was used [16]: Gf,h,0�(x,y) and Gf,h,–

90�(x,y).
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Each HJS image, corresponding to the determined

Region Of Interest (ROI), was convolved with the,

Gf,h,0�(x,y) as well as with the Gf,h,–90�(x,y) filter,

according to Eqs. 6 and 7, respectively:

GFIMf;h;0� ði;jÞ¼
Xþm

x¼�m

Xþm

y¼�m

Gf;h;0� ðx;yÞIðiþx;jþyÞ;

m¼z�1

2
;z¼5: ð6Þ

GFIMf;h;�90� ði; jÞ ¼
Xþm

x¼�m

Xþm

y¼�m

Gf;h;�90� ðx; yÞIðiþ x; jþ yÞ;

m ¼ z� 1

2
; z ¼ 5; ð7Þ

where I(i,j) is the input HJS-ROI image, Gf,h,0�(x,y)

and Gf,h,–90�(x,y) are the z · z Gabor filters, while

GFIMf,h,0�(i,j) and GFIMf, h, –90�(i,j) represent the fil-

tered images corresponding to the Gf,h,0�(x,y) and Gf,h,–

90�(x,y) filters, respectively.

Based on the filtered images GFIMf,h,0�(i,j) and

GFIMf,h,–90�(i,j), an image labelled as Gabor Energy

Image (GEN_Image) was produced, according to

Eq. 8:

GEN Imageði; jÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GFIMf;h;0� ði; jÞ
� �2 þ GFIMf;h;�90� ði; jÞ

� �2
q

: ð8Þ

Each point of the GEN_Image represents a measure-

ment that is characterized as Gabor Energy [16].

Four (4) GEN_Images, corresponding to the filter

orientations of h = 0�, 45�, 90�, and 135�, were pro-

duced. From each GEN_Image, the following statistics

were calculated as textural features and were used by

the classification algorithms: mean value, variance,

skewness, kurtosis, range and standard deviation.

Following multiple trials regarding the filter speci-

fications, the best classification scores were achieved

for textural features that were extracted from images

that had been convolved with z · z Gabor filters, z = 5.

6.2 Generation of Gabor energy measure run

length textural features

In the present study, new features are proposed based

on the combination of GLRLM features and Gabor

textural features.

These new features, labelled as Gabor Energy

Measure Run Length (GEMRL) features, were ex-

tracted from each one of four Gabor Energy Images

according to the following approach.

The Gabor Energy values of a Gabor Energy Image

were transformed into the region 0–15 by means of

a linear transformation providing a grey-level image

of 16 discrete grey tones. Denoting this image as

GEN_Image_h_16 (where h: 0, 45, 90 and 135� repre-

sents the orientation of the Gabor filter applied on the

image), the new features were generated employing

the Eqs. 9–13:

GEMRL1 ¼ 1

P

XR

j¼1

rdðjÞ
j2
: ð9Þ

GEMRL2 ¼ 1

P

XR

j¼1

rdðjÞj2: ð10Þ

GEMRL3 ¼ 1

P

XG�1

i¼0

½gdðiÞ�2: ð11Þ

GEMRL4 ¼ 1

P

XR

j¼1

½rdðjÞ�2: ð12Þ

GEMRL5 ¼ 1

PN

XR

j¼1

rdðjÞ; ð13Þ

where, j represents the length of the run for the grey

tone i, G and R are the numbers of grey tones and run-

lengths in the GEN_Image_h_16, respectively, PN is

the number of pixels in the GEN_Image_h_16, while

the rd, gd, P are defined in the Eqs. 14–16:

rdðjÞ ¼
XG�1

i¼0

qdði; jÞ: ð14Þ

gdðiÞ ¼
XR

j¼1

qdði; jÞ: ð15Þ

P ¼
XG�1

i¼0

XR

j¼1

qdði; jÞ ¼
XG�1

i¼0

gdðiÞ ¼
XR

j¼1

rdðjÞ; ð16Þ

where, qd (i,j) represents each element of the GLRLM

computed along the angular direction d (d: 0, 45, 90

and 135�).

From each GEN_Image_h_16, four GLRLM were

calculated for the angular directions d of 0, 45, 90 and

135�. For each one of the GEMRL features, described

by Eqs. 9–13, four values were extracted (one value

from each GLRLM), as proposed by Galloway [14].

The mean of these four values was used as the final

feature value [14].
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